Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption (2201.03182v2)

Published 10 Jan 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: There has been a surge of interest in developing robust estimators for models with heavy-tailed and bounded variance data in statistics and machine learning, while few works impose unbounded variance. This paper proposes two type of robust estimators, the ridge log-truncated M-estimator and the elastic net log-truncated M-estimator. The first estimator is applied to convex regressions such as quantile regression and generalized linear models, while the other one is applied to high dimensional non-convex learning problems such as regressions via deep neural networks. Simulations and real data analysis demonstrate the {robustness} of log-truncated estimations over standard estimations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.