Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imagined versus Remembered Stories: Quantifying Differences in Narrative Flow (2201.02662v2)

Published 7 Jan 2022 in cs.CL and cs.AI

Abstract: Lifelong experiences and learned knowledge lead to shared expectations about how common situations tend to unfold. Such knowledge of narrative event flow enables people to weave together a story. However, comparable computational tools to evaluate the flow of events in narratives are limited. We quantify the differences between autobiographical and imagined stories by introducing sequentiality, a measure of narrative flow of events, drawing probabilistic inferences from a cutting-edge LLM (GPT-3). Sequentiality captures the flow of a narrative by comparing the probability of a sentence with and without its preceding story context. We applied our measure to study thousands of diary-like stories, collected from crowdworkers about either a recent remembered experience or an imagined story on the same topic. The results show that imagined stories have higher sequentiality than autobiographical stories and that the sequentiality of autobiographical stories increases when the memories are retold several months later. In pursuit of deeper understandings of how sequentiality measures the flow of narratives, we explore proportions of major and minor events in story sentences, as annotated by crowdworkers. We find that lower sequentiality is associated with higher proportions of major events. The methods and results highlight opportunities to use cutting-edge computational analyses, such as sequentiality, on large corpora of matched imagined and autobiographical stories to investigate the influences of memory and reasoning on language generation processes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.