Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stories for Images-in-Sequence by using Visual and Narrative Components (1805.05622v3)

Published 15 May 2018 in cs.AI, cs.CL, and cs.CV

Abstract: Recent research in AI is focusing towards generating narrative stories about visual scenes. It has the potential to achieve more human-like understanding than just basic description generation of images- in-sequence. In this work, we propose a solution for generating stories for images-in-sequence that is based on the Sequence to Sequence model. As a novelty, our encoder model is composed of two separate encoders, one that models the behaviour of the image sequence and other that models the sentence-story generated for the previous image in the sequence of images. By using the image sequence encoder we capture the temporal dependencies between the image sequence and the sentence-story and by using the previous sentence-story encoder we achieve a better story flow. Our solution generates long human-like stories that not only describe the visual context of the image sequence but also contains narrative and evaluative language. The obtained results were confirmed by manual human evaluation.

Citations (17)

Summary

We haven't generated a summary for this paper yet.