Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

An algebraic property of Reidemeister torsion (2201.01400v2)

Published 5 Jan 2022 in math.GT

Abstract: For a 3-manifold $M$ and an acyclic $\mathit{SL}(2,\mathbb{C})$-representation $\rho$ of its fundamental group, the $\mathit{SL}(2,\mathbb{C})$-Reidemeister torsion $\tau_\rho(M) \in \mathbb{C}\times$ is defined. If there are only finitely many conjugacy classes of irreducible representations, then the Reidemeister torsions are known to be algebraic numbers. Furthermore, we prove that the Reidemeister torsions are not only algebraic numbers but also algebraic integers for most Seifert fibered spaces and infinitely many hyperbolic 3-manifolds. Also, for a knot exterior $E(K)$, we discuss the behavior of $\tau_\rho(E(K))$ when the restriction of $\rho$ to the boundary torus is fixed.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.