Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Partially latent factors based multi-view subspace learning (2201.01050v2)

Published 4 Jan 2022 in eess.SP

Abstract: Multi-view subspace clustering always performs well in high-dimensional data analysis, but is sensitive to the quality of data representation. To this end, a two stage fusion strategy is proposed to embed representation learning into the process of multi-view subspace clustering. This paper first propose a novel matrix factorization method that can separate the coupling consistent and complementary information from observations of multiple views. Based on the obtained latent representations, we further propose two subspace clustering strategies: feature-level fusion and subspace-level hierarchical strategy. Feature-level method concatenates all kinds of latent representations from multiple views, and the original problem therefore degenerates to a single-view subspace clustering process. Subspace-level hierarchical method performs different self-expressive reconstruction processes on the corresponding complementary and consistent latent representations coming from each view, i.e. the prior constraints imposed on different types of subspace representations are related to the appropriate input factors. Finally, extensive experimental results on real-world datasets demonstrate the superiority of our proposed methods by comparing against some state-of-the-art subspace clustering algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube