New second-order optimality conditions in sub-Riemannian Geometry (2201.00041v2)
Abstract: We study the geometry of the second-order expansion of the extended end-point map for the sub-Riemannian geodesic problem. Translating the geometric reality into equations we derive new second-order necessary optimality conditions in sub-Riemannian Geometry. In particular, we find an ODE for velocity of an abnormal sub-Riemannian geodesics. It allows to divide abnormal minimizers into two classes, which we propose to call 2-normal and 2-abnormal extremals. In the 2-normal case the above ODE completely determines the velocity of a curve, while in the 2-abnormal case the velocity is undetermined at some, or at all points. With some enhancement of the presented results it should be possible to prove the regularity of all 2-normal extremals (the 2-abnormal case seems to require study of higher-order conditions) thus making a step towards solving the problem of smoothness of sub-Riemannian abnormal geodesics. As a by-product we present a new derivation of Goh conditions. We also prove that the assumptions weaker than these used in [Boarotto, Monti, Palmurella, 2020] to derive third-order Goh conditions, imply piece-wise-$C2$ regularity of an abnormal extremal.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.