Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

New second-order optimality conditions in sub-Riemannian Geometry (2201.00041v2)

Published 31 Dec 2021 in math.DG and math.OC

Abstract: We study the geometry of the second-order expansion of the extended end-point map for the sub-Riemannian geodesic problem. Translating the geometric reality into equations we derive new second-order necessary optimality conditions in sub-Riemannian Geometry. In particular, we find an ODE for velocity of an abnormal sub-Riemannian geodesics. It allows to divide abnormal minimizers into two classes, which we propose to call 2-normal and 2-abnormal extremals. In the 2-normal case the above ODE completely determines the velocity of a curve, while in the 2-abnormal case the velocity is undetermined at some, or at all points. With some enhancement of the presented results it should be possible to prove the regularity of all 2-normal extremals (the 2-abnormal case seems to require study of higher-order conditions) thus making a step towards solving the problem of smoothness of sub-Riemannian abnormal geodesics. As a by-product we present a new derivation of Goh conditions. We also prove that the assumptions weaker than these used in [Boarotto, Monti, Palmurella, 2020] to derive third-order Goh conditions, imply piece-wise-$C2$ regularity of an abnormal extremal.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)