Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nakayama algebras and Fuchsian singularities (2112.15587v2)

Published 31 Dec 2021 in math.RT and math.RA

Abstract: This present paper is devoted to the study of a class of Nakayama algebras $N_n(r)$ given by the path algebra of the equioriented quiver $\mathbb{A}_n$ subject to the nilpotency degree $r$ for each sequence of $r$ consecutive arrows. We show that the Nakayama algebras $N_n(r)$ for certain pairs $(n,r)$ can be realized as endomorphism algebras of tilting objects in the bounded derived category of coherent sheaves over a weighted projective line, or in its stable category of vector bundles. Moreover, we classify all the Nakayama algebras $N_n(r)$ of Fuchsian type, that is, derived equivalent to the bounded derived categories of extended canonical algebras. We also provide a new way to prove the classification result on Nakayama algebras of piecewise hereditary type, which have been done by Happel--Seidel before.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.