Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Concave-Convex PDMP-based sampling (2112.12897v1)

Published 24 Dec 2021 in stat.ME

Abstract: Recently non-reversible samplers based on simulating piecewise deterministic Markov processes (PDMPs) have shown potential for efficient sampling in Bayesian inference problems. However, there remains a lack of guidance on how to best implement these algorithms. If implemented poorly, the computational costs of simulating event times can out-weigh the statistical efficiency of the non-reversible dynamics. Drawing on the adaptive rejection literature, we propose the concave-convex adaptive thinning approach for simulating a piecewise deterministic Markov process (CC-PDMP). This approach provides a general guide for constructing bounds that may be used to facilitate PDMP-based sampling. A key advantage of this method is its additive structure - adding concave-convex decompositions yields a concave-convex decomposition. This facilitates swapping priors, simple implementation and computationally efficient thinning. In particular, our approach is well suited to local PDMP simulation where known conditional independence of the target can be exploited for potentially huge computational gains. We provide an R package for implementing the CC-PDMP approach and illustrate how our method outperforms existing approaches to simulating events in the PDMP literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.