A combinatorial proof of the Gaussian product inequality beyond the MTP${}_2$ case (2112.12283v4)
Abstract: A combinatorial proof of the Gaussian product inequality (GPI) is given under the assumption that each component of a centered Gaussian random vector $\boldsymbol{X} = (X_1, \ldots, X_d)$ of arbitrary length can be written as a linear combination, with coefficients of identical sign, of the components of a standard Gaussian random vector. This condition on $\boldsymbol{X}$ is shown to be strictly weaker than the assumption that the density of the random vector $(|X_1|, \ldots, |X_d|)$ is multivariate totally positive of order $2$, abbreviated MTP${}_2$, for which the GPI is already known to hold. Under this condition, the paper highlights a new link between the GPI and the monotonicity of a certain ratio of gamma functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.