Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Multimodal Adversarially Learned Inference with Factorized Discriminators (2112.10384v1)

Published 20 Dec 2021 in cs.LG and cs.CV

Abstract: Learning from multimodal data is an important research topic in machine learning, which has the potential to obtain better representations. In this work, we propose a novel approach to generative modeling of multimodal data based on generative adversarial networks. To learn a coherent multimodal generative model, we show that it is necessary to align different encoder distributions with the joint decoder distribution simultaneously. To this end, we construct a specific form of the discriminator to enable our model to utilize data efficiently, which can be trained constrastively. By taking advantage of contrastive learning through factorizing the discriminator, we train our model on unimodal data. We have conducted experiments on the benchmark datasets, whose promising results show that our proposed approach outperforms the-state-of-the-art methods on a variety of metrics. The source code will be made publicly available.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)