Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torch.fx: Practical Program Capture and Transformation for Deep Learning in Python (2112.08429v2)

Published 15 Dec 2021 in cs.LG

Abstract: Modern deep learning frameworks provide imperative, eager execution programming interfaces embedded in Python to provide a productive development experience. However, deep learning practitioners sometimes need to capture and transform program structure for performance optimization, visualization, analysis, and hardware integration. We study the different designs for program capture and transformation used in deep learning. By designing for typical deep learning use cases rather than long tail ones, it is possible to create a simpler framework for program capture and transformation. We apply this principle in torch.fx, a program capture and transformation library for PyTorch written entirely in Python and optimized for high developer productivity by ML practitioners. We present case studies showing how torch.fx enables workflows previously inaccessible in the PyTorch ecosystem.

Citations (38)

Summary

We haven't generated a summary for this paper yet.