Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

JANUS: Fast and Flexible Deep Learning via Symbolic Graph Execution of Imperative Programs (1812.01329v2)

Published 4 Dec 2018 in cs.PL and cs.LG

Abstract: The rapid evolution of deep neural networks is demanding deep learning (DL) frameworks not only to satisfy the requirement of quickly executing large computations, but also to support straightforward programming models for quickly implementing and experimenting with complex network structures. However, existing frameworks fail to excel in both departments simultaneously, leading to diverged efforts for optimizing performance and improving usability. This paper presents JANUS, a system that combines the advantages from both sides by transparently converting an imperative DL program written in Python, the de-facto scripting language for DL, into an efficiently executable symbolic dataflow graph. JANUS can convert various dynamic features of Python, including dynamic control flow, dynamic types, and impure functions, into elements of a symbolic dataflow graph. Experiments demonstrate that JANUS can achieve fast DL training by exploiting the techniques imposed by symbolic graph-based DL frameworks, while maintaining the simple and flexible programmability of imperative DL frameworks at the same time.

Citations (24)

Summary

We haven't generated a summary for this paper yet.