Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Theory of versatile fidelity estimation with confidence (2112.07947v2)

Published 15 Dec 2021 in quant-ph

Abstract: Estimating the fidelity with a target state is important in quantum information tasks. Many fidelity estimation techniques present a suitable measurement scheme to perform the estimation. In contrast, we present techniques that allow the experimentalist to choose a convenient measurement setting. Our primary focus lies on a method that constructs an estimator with nearly minimax optimal confidence intervals for any specified measurement setting. We demonstrate, through a combination of theoretical and numerical results, various desirable properties of the method: robustness against experimental imperfections, competitive sample complexity, and accurate estimates in practice. We compare this method with Maximum Likelihood Estimation and the associated Profile Likelihood method, a Semi-Definite Programming based approach, direct fidelity estimation, quantum state verification, and classical shadows. Our method can also be used for estimating the expectation value of any observable with the same guarantees.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube