Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secretary Matching With Vertex Arrivals and No Rejections (2112.07140v1)

Published 14 Dec 2021 in cs.DS and cs.GT

Abstract: Most prior work on online matching problems has been with the flexibility of keeping some vertices unmatched. We study three related online matching problems with the constraint of matching every vertex, i.e., with no rejections. We adopt a model in which vertices arrive in uniformly random order and the non-negative edge-weights are arbitrary. For the capacitated online bipartite matching problem, in which the vertices of one side of the graph are offline and those of the other side arrive online, we give a 4.62-competitive algorithm when the capacity of each offline vertex is 2. For the online general (non-bipartite) matching problem, where all vertices arrive online, we give a 3.34-competitive algorithm. We also study the online roommate matching problem (Huzhang et al. 2017), in which each room (offline vertex) holds 2 persons (online vertices). Persons derive non-negative additive utilities from their room as well as roommate. In this model, with the goal of maximizing the social welfare, we give a 7.96-competitive algorithm. This is an improvement over the 24.72 approximation factor in (Huzhang et al. 2017).

Citations (2)

Summary

We haven't generated a summary for this paper yet.