Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Bounds for Fractional Online Matching Problems (2202.02948v2)

Published 7 Feb 2022 in cs.DS

Abstract: Online bipartite matching with one-sided arrival and its variants have been extensively studied since the seminal work of Karp, Vazirani, and Vazirani (STOC 1990). Motivated by real-life applications with dynamic market structures, e.g. ride-sharing, two generalizations of the classical one-sided arrival model are proposed to allow non-bipartite graphs and to allow all vertices to arrive online. Namely, online matching with general vertex arrival is introduced by Wang and Wong (ICALP 2015), and fully online matching is introduced by Huang et al. (JACM 2020). In this paper, we study the fractional versions of the two models. We improve three out of the four state-of-the-art upper and lower bounds of the two models. For fully online matching, we design a $0.6$-competitive algorithm and prove no algorithm can be $0.613$-competitive. For online matching with general vertex arrival, we prove no algorithm can be $0.584$-competitive. Moreover, we give an arguably more intuitive algorithm for the general vertex arrival model, compared to the algorithm of Wang and Wong, while attaining the same competitive ratio of $0.526$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.