Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Nash Equilibria in Normal-Form Games With Vectorial Payoffs (2112.06500v4)

Published 13 Dec 2021 in cs.GT and cs.MA

Abstract: We provide an in-depth study of Nash equilibria in multi-objective normal form games (MONFGs), i.e., normal form games with vectorial payoffs. Taking a utility-based approach, we assume that each player's utility can be modelled with a utility function that maps a vector to a scalar utility. In the case of a mixed strategy, it is meaningful to apply such a scalarisation both before calculating the expectation of the payoff vector as well as after. This distinction leads to two optimisation criteria. With the first criterion, players aim to optimise the expected value of their utility function applied to the payoff vectors obtained in the game. With the second criterion, players aim to optimise the utility of expected payoff vectors given a joint strategy. Under this latter criterion, it was shown that Nash equilibria need not exist. Our first contribution is to provide a sufficient condition under which Nash equilibria are guaranteed to exist. Secondly, we show that when Nash equilibria do exist under both criteria, no equilibrium needs to be shared between the two criteria, and even the number of equilibria can differ. Thirdly, we contribute a study of pure strategy Nash equilibria under both criteria. We show that when assuming quasiconvex utility functions for players, the sets of pure strategy Nash equilibria under both optimisation criteria are equivalent. This result is further extended to games in which players adhere to different optimisation criteria. Finally, given these theoretical results, we construct an algorithm to compute all pure strategy Nash equilibria in MONFGs where players have a quasiconvex utility function.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Willem Röpke (8 papers)
  2. Diederik M. Roijers (40 papers)
  3. Ann Nowé (56 papers)
  4. Roxana Rădulescu (16 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.