Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Existence, Mixtures, Computation and Efficiency in Multi-objective Games (1809.04979v1)

Published 13 Sep 2018 in cs.GT

Abstract: In a multi-objective game, each individual's payoff is a \emph{vector-valued} function of everyone's actions. Under such vectorial payoffs, Pareto-efficiency is used to formulate each individual's best-response condition, inducing Pareto-Nash equilibria as the fundamental solution concept. In this work, we follow a classical game-theoretic agenda to study equilibria. Firstly, we show in several ways that numerous pure-strategy Pareto-Nash equilibria exist. Secondly, we propose a more consistent extension to mixed-strategy equilibria. Thirdly, we introduce a measurement of the efficiency of multiple objectives games, which purpose is to keep the information on each objective: the multi-objective coordination ratio. Finally, we provide algorithms that compute Pareto-Nash equilibria and that compute or approximate the multi-objective coordination ratio.

Citations (5)

Summary

We haven't generated a summary for this paper yet.