Supercloseness of the NIPG method for a singularly perturbed convection diffusion problem on Shishkin mesh (2112.06201v1)
Abstract: In this paper, we analyze the supercloseness result of nonsymmetric interior penalty Galerkin (NIPG) method on Shishkin mesh for a singularly perturbed convection diffusion problem. According to the characteristics of the solution and the scheme, a new analysis is proposed. More specifically, Gau{\ss} Lobatto interpolation and Gau{\ss} Radau interpolation are introduced inside and outside the layer, respectively. By selecting special penalty parameters at different mesh points, we further establish supercloseness of almost k + 1 order under the energy norm. Here k is the order of piecewise polynomials. Then, a simple post processing operator is constructed. In particular, a new analysis is proposed for the stability analysis of this operator. On the basis of that, we prove that the corresponding post-processing can make the numerical solution achieve higher accuracy. Finally, superconvergence can be derived under the discrete energy norm. These theoretical conclusions can be verified numerically.