Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supercloseness of the NIPG method for a singularly perturbed convection diffusion problem on Shishkin mesh (2112.06201v1)

Published 12 Dec 2021 in math.NA and cs.NA

Abstract: In this paper, we analyze the supercloseness result of nonsymmetric interior penalty Galerkin (NIPG) method on Shishkin mesh for a singularly perturbed convection diffusion problem. According to the characteristics of the solution and the scheme, a new analysis is proposed. More specifically, Gau{\ss} Lobatto interpolation and Gau{\ss} Radau interpolation are introduced inside and outside the layer, respectively. By selecting special penalty parameters at different mesh points, we further establish supercloseness of almost k + 1 order under the energy norm. Here k is the order of piecewise polynomials. Then, a simple post processing operator is constructed. In particular, a new analysis is proposed for the stability analysis of this operator. On the basis of that, we prove that the corresponding post-processing can make the numerical solution achieve higher accuracy. Finally, superconvergence can be derived under the discrete energy norm. These theoretical conclusions can be verified numerically.

Citations (1)

Summary

We haven't generated a summary for this paper yet.