Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supercloseness of the DDG method for a singularly perturbed convection diffusion problem on Shishkin mesh (2402.08912v1)

Published 14 Feb 2024 in math.NA and cs.NA

Abstract: This paper investigates the supercloseness of a singularly perturbed convection diffusion problem using the direct discontinuous Galerkin (DDG) method on a Shishkin mesh. The main technical difficulties lie in controlling the diffusion term inside the layer, the convection term outside the layer, and the inter element jump term caused by the discontinuity of the numerical solution. The main idea is to design a new composite interpolation, in which a global projection is used outside the layer to satisfy the interface conditions determined by the selection of numerical flux, thereby eliminating or controlling the troublesome terms on the unit interface; and inside the layer, Gau{\ss} Lobatto projection is used to improve the convergence order of the diffusion term. On the basis of that, by selecting appropriate parameters in the numerical flux, we obtain the supercloseness result of almost $k+1$ order under an energy norm. Numerical experiments support our main theoretical conclusion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. M. Stynes and L. Tobiska. The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal., 41(5):1620–1642, 2003.
  2. M. Braack and E. Burman. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal., 43(6):2544–2566, 2006.
  3. M. Stynes and D. Stynes. Convection-diffusion Problems, volume 196. American Mathematical Soc., 2018.
  4. Further considerations on residual-free bubbles for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg., 166(1-2):25–33, 1998.
  5. D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19(4):742–760, 1982.
  6. M. Wheeler. An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal., 15(1):152–161, 1978.
  7. A. Mizukami and T. J. R. Hughes. A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle. Comput. Methods Appl. Mech. Engrg., 50(2):181–193, 1985.
  8. J. Zhang and X. Ma. Supercloseness of the NIPG method for a singularly perturbed convection diffusion problem on Shishkin mesh. arXiv preprint arXiv:2112.06201, 2021.
  9. A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal., 36(6):1933–1948, 1999.
  10. F. Brezzi and A. Russo. Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci., 4(4):571–587, 1994.
  11. E. Burman. A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal., 43(5):2012–2033, 2005.
  12. E. Burman. Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Engrg., 199(17-20):1114–1123, 2010.
  13. E. Burman and A. Ern. Continuous interior penalty h⁢pℎ𝑝hpitalic_h italic_p-finite element methods for advection and advection-diffusion equations. Math. Comp., 76(259):1119–1140, 2007.
  14. Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Partial Differential Equations, 33(1):290–317, 2017.
  15. Adaptive hybridized interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems. Numer. Math. Theory Methods Appl., 4(1):13–37, 2011.
  16. A. Cesmelioglu and S. Rhebergen. A hybridizable discontinuous Galerkin method for the coupled Navier-Stokes and Darcy problem. J. Comput. Appl. Math., 422:114923, 2023.
  17. L. Chen and J. Xu. An optimal streamline diffusion finite element method for a singularly perturbed problem. In Recent Advances in Adaptive Computation, volume 383 of Contemp. Math., pages 191–201. Amer. Math. Soc., Providence, RI, 2005.
  18. Discontinuous Galerkin Methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng. 11, Springer, Berlin, 2000.
  19. Y. Cheng. On the local discontinuous Galerkin method for singularly perturbed problem with two parameters. J. Comput. Appl. Math., 392:113485, 2021.
  20. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM, 2002.
  21. B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–2463, 1998.
  22. J. Hu and Y. Huang. A priori and a posteriori error analysis of the discontinuous Galerkin methods for Reissner-Mindlin plates. Adv. Appl. Math. Mech., 3(6):649–662, 2011.
  23. Recovery of normal derivatives from the piecewise L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT projection. J. Comput. Phys., 231(4):1230–1243, 2012.
  24. A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg., 73(2):173–189, 1989.
  25. Finite element analysis of incompressible viscous flows by the penalty function formulation. J. Comput. Phys., 30(1):1–60, 1979.
  26. H. Liu. Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comp., 84(295):2263–2295, 2015.
  27. H. Liu and J. Yan. The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal., 47(1):675–698, 2008/09.
  28. H. Liu and J. Yan. The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys., 8(3):541–564, 2010.
  29. G. Ma and M. Stynes. A direct discontinuous Galerkin finite element method for convection-dominated two-point boundary value problems. Numer. Algorithms, 83(2):741–765, 2020.
  30. A unified convergence analysis for local projection stabilisations applied to the Oseen problem. M2AN Math. Model. Numer. Anal., 41(4):713–742, 2007.
  31. Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comp., 85(299):1225–1261, 2016.
  32. Robust Numerical Methods for Singularly Perturbed Differential Equations, volume 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2008.
  33. G. I. Shishkin. Grid approximation of singularly perturbed systems of elliptic and parabolic equations with convective terms. Differ. Uravn., 34(12):1686–1696, 1998.
  34. X. Ma and J. Zhang. Supercloseness analysis of the nonsymmetric interior penalty Galerkin method for a singularly perturbed problem on Bakhvalov-type mesh. Appl. Math. Lett., 144:108701, 7, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com