Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Behavior measures are predicted by how information is encoded in an individual's brain (2112.06048v1)

Published 11 Dec 2021 in q-bio.NC, cs.LG, and eess.IV

Abstract: Similar to how differences in the proficiency of the cardiovascular and musculoskeletal system predict an individual's athletic ability, differences in how the same brain region encodes information across individuals may explain their behavior. However, when studying how the brain encodes information, researchers choose different neuroimaging tasks (e.g., language or motor tasks), which can rely on processing different types of information and can modulate different brain regions. We hypothesize that individual differences in how information is encoded in the brain are task-specific and predict different behavior measures. We propose a framework using encoding-models to identify individual differences in brain encoding and test if these differences can predict behavior. We evaluate our framework using task functional magnetic resonance imaging data. Our results indicate that individual differences revealed by encoding-models are a powerful tool for predicting behavior, and that researchers should optimize their choice of task and encoding-model for their behavior of interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.