Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VAQEM: A Variational Approach to Quantum Error Mitigation (2112.05821v1)

Published 10 Dec 2021 in quant-ph

Abstract: Variational Quantum Algorithms (VQAs) are relatively robust to noise, but errors are still a significant detriment to VQAs on near-term quantum machines. It is imperative to employ error mitigation techniques to improve VQA fidelity. While existing error mitigation techniques built from theory provide substantial gains, the disconnect between theory and real machine execution limits their benefits. Thus, it is critical to optimize mitigation techniques to explicitly suit the target application as well as the noise characteristics of the target machine. We propose VAQEM, which dynamically tailors existing error mitigation techniques to the actual, dynamic noisy execution characteristics of VQAs on a target quantum machine. We do so by tuning specific features of these mitigation techniques similar to the traditional rotation angle parameters - by targeting improvements towards a specific objective function which represents the VQA problem at hand. In this paper, we target two types of error mitigation techniques which are suited to idle times in quantum circuits: single qubit gate scheduling and the insertion of dynamical decoupling sequences. We gain substantial improvements to VQA objective measurements - a mean of over 3x across a variety of VQA applications, run on IBM Quantum machines. More importantly, the proposed variational approach is general and can be extended to many other error mitigation techniques whose specific configurations are hard to select a priori. Integrating more mitigation techniques into the VAQEM framework can lead to potentially realizing practically useful VQA benefits on today's noisy quantum machines.

Citations (49)

Summary

We haven't generated a summary for this paper yet.