Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
13 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Hierarchical Reinforcement Learning with Timed Subgoals (2112.03100v1)

Published 6 Dec 2021 in cs.LG

Abstract: Hierarchical reinforcement learning (HRL) holds great potential for sample-efficient learning on challenging long-horizon tasks. In particular, letting a higher level assign subgoals to a lower level has been shown to enable fast learning on difficult problems. However, such subgoal-based methods have been designed with static reinforcement learning environments in mind and consequently struggle with dynamic elements beyond the immediate control of the agent even though they are ubiquitous in real-world problems. In this paper, we introduce Hierarchical reinforcement learning with Timed Subgoals (HiTS), an HRL algorithm that enables the agent to adapt its timing to a dynamic environment by not only specifying what goal state is to be reached but also when. We discuss how communicating with a lower level in terms of such timed subgoals results in a more stable learning problem for the higher level. Our experiments on a range of standard benchmarks and three new challenging dynamic reinforcement learning environments show that our method is capable of sample-efficient learning where an existing state-of-the-art subgoal-based HRL method fails to learn stable solutions.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com