Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voronoi Diagrams in the Hilbert Metric (2112.03056v1)

Published 6 Dec 2021 in cs.CG and math.MG

Abstract: The Hilbert metric is a distance function defined for points lying within a convex body. It generalizes the Cayley-Klein model of hyperbolic geometry to any convex set, and it has numerous applications in the analysis and processing of convex bodies. In this paper, we study the geometric and combinatorial properties of the Voronoi diagram of a set of point sites under the Hilbert metric. Given any convex polygon $K$ bounded by $m$ sides, we present two algorithms (one randomized and one deterministic) for computing the Voronoi diagram of an $n$-element point set in the Hilbert metric induced by $K$. Our randomized algorithm runs in $O(m n + n (\log n)(\log m n))$ expected time, and our deterministic algorithm runs in time $O(m n \log n)$. Both algorithms use $O(m n)$ space. We show that the worst-case combinatorial complexity of the Voronoi diagram is $\Theta(m n)$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.