Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delaunay Triangulations in the Hilbert Metric (2312.05987v1)

Published 10 Dec 2023 in cs.CG

Abstract: The Hilbert metric is a distance function defined for points lying within the interior of a convex body. It arises in the analysis and processing of convex bodies, machine learning, and quantum information theory. In this paper, we show how to adapt the Euclidean Delaunay triangulation to the Hilbert geometry defined by a convex polygon in the plane. We analyze the geometric properties of the Hilbert Delaunay triangulation, which has some notable differences with respect to the Euclidean case, including the fact that the triangulation does not necessarily cover the convex hull of the point set. We also introduce the notion of a Hilbert ball at infinity, which is a Hilbert metric ball centered on the boundary of the convex polygon. We present a simple randomized incremental algorithm that computes the Hilbert Delaunay triangulation for a set of $n$ points in the Hilbert geometry defined by a convex $m$-gon. The algorithm runs in $O(n (\log n + \log3 m))$ expected time. In addition we introduce the notion of the Hilbert hull of a set of points, which we define to be the region covered by their Hilbert Delaunay triangulation. We present an algorithm for computing the Hilbert hull in time $O(n h \log2 m)$, where $h$ is the number of points on the hull's boundary.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Approximate nearest neighbor searching with non-Euclidean and weighted distances. In Proc. 30th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 355–372, 2019. doi:10.1137/1.9781611975482.23.
  2. Economical Delone sets for approximating convex bodies. In Proc. 16th Scand. Workshop Algorithm Theory, pages 4:1–4:12, 2018. doi:10.4230/LIPIcs.SWAT.2018.4.
  3. Optimal bound on the combinatorial complexity of approximating polytopes. ACM Trans. Algorithms, 18:1–29, 2022. doi:10.1145/3559106.
  4. Near-optimal ε𝜀\varepsilonitalic_ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1–15, 2017. doi:10.4230/LIPIcs.SoCG.2017.10.
  5. On the combinatorial complexity of approximating polytopes. Discrete Comput. Geom., 58(4):849–870, 2017. doi:10.1007/s00454-016-9856-5.
  6. Approximate polytope membership queries. SIAM J. Comput., 47(1):1–51, 2018. doi:10.1137/16M1061096.
  7. Convex Optimization. Cambridge University Press, 2004. doi:10.1017/CBO9780511804441.
  8. Software and analysis for dynamic Voronoi diagrams in the Hilbert metric, 2023. arXiv:2304.02745.
  9. Entropic and displacement interpolation: A computational approach using the Hilbert metric. SIAM J. Appl. Math., 76:2375–2396, 2016. doi:10.1137/16M1061382.
  10. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2010. doi:10.1007/978-3-540-77974-2.
  11. Covering cubes and the closest vector problem. In Proc. 27th Annu. Sympos. Comput. Geom., pages 417–423, 2011. doi:10.1145/1998196.1998264.
  12. Approximate CVPs in time 20.802⁢nsuperscript20.802𝑛2^{0.802n}2 start_POSTSUPERSCRIPT 0.802 italic_n end_POSTSUPERSCRIPT. J. Comput. Sys. Sci., 124:129–139, 2021. doi:10.1016/j.jcss.2021.09.006.
  13. Voronoi diagrams in the Hilbert metric, 2021. arXiv:2112.03056.
  14. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992. doi:10.1007/BF01758770.
  15. D. Hilbert. Ueber die gerade Linie als kürzeste Verbindung zweier Punkte. Math. Annalen, 46:91–96, 1895. doi:10.1007/BF02096204.
  16. S. Kullback and R. A. Leibler. On information and sufficiency. Annals. Math. Stat., 22:79–86, 1951. doi:10.1214/aoms/1177729694.
  17. Birkhoff’s version of Hilbert’s metric and its applications in analysis, 2013. arXiv:1304.7921.
  18. Covering convex bodies and the closest vector problem. Discrete Comput. Geom., 67:1191–1210, 2022. doi:10.1007/s00454-022-00392-x.
  19. On balls in a Hilbert polygonal geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 67:1–67:4, 2017. (Multimedia contribution). doi:10.4230/LIPIcs.SoCG.2017.67.
  20. Frank Nielsen and Ke Sun. Clustering in Hilbert’s projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices. In Frank Nielsen, editor, Geometric Structures of Information, pages 297–331. Springer Internat. Pub., 2019. doi:10.1007/978-3-030-02520-5_11.
  21. Frank Nielsen and Ke Sun. Non-linear embeddings in Hilbert simplex geometry, 2022. arXiv:2203.11434.
  22. Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society Publishing House, 2014. doi:10.4171/147.
  23. Hilbert’s projective metric in quantum information theory. J. Math. Physics, 52(8), 2011. doi:10.1063/1.3615729.
  24. Approximate CVP in time 20.802⁢nsuperscript20.802𝑛2^{0.802n}2 start_POSTSUPERSCRIPT 0.802 italic_n end_POSTSUPERSCRIPT – Now in any norm! In Proc. 23rd Internat. Conf. on Integ. Prog. and Comb. Opt. (IPCO 2022), pages 440–453, 2022. doi:10.1007/978-3-031-06901-7_33.
  25. Godfried T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern Recogn., 12:261–268, 1980. doi:10.1016/0031-3203(80)90066-7.
  26. Constantin Vernicos. On the Hilbert geometry of convex polytopes. In Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics, pages 111–126. European Mathematical Society Publishing House, 2014. doi:10.48550/arXiv.1406.0733.
  27. Flag-approximability of convex bodies and volume growth of Hilbert geometries, 2018. arXiv:1809.09471.
Citations (2)

Summary

We haven't generated a summary for this paper yet.