Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Strategy based Pre-Training Method for Cold-Start Recommendation (2112.02275v4)

Published 4 Dec 2021 in cs.IR and cs.AI

Abstract: Cold-start problem is a fundamental challenge for recommendation tasks. The recent self-supervised learning (SSL) on Graph Neural Networks (GNNs) model, PT-GNN, pre-trains the GNN model to reconstruct the cold-start embeddings and has shown great potential for cold-start recommendation. However, due to the over-smoothing problem, PT-GNN can only capture up to 3-order relation, which can not provide much useful auxiliary information to depict the target cold-start user or item. Besides, the embedding reconstruction task only considers the intra-correlations within the subgraph of users and items, while ignoring the inter-correlations across different subgraphs. To solve the above challenges, we propose a multi-strategy based pre-training method for cold-start recommendation (MPT), which extends PT-GNN from the perspective of model architecture and pretext tasks to improve the cold-start recommendation performance. Specifically, in terms of the model architecture, in addition to the short-range dependencies of users and items captured by the GNN encoder, we introduce a Transformer encoder to capture long-range dependencies. In terms of the pretext task, in addition to considering the intra-correlations of users and items by the embedding reconstruction task, we add embedding contrastive learning task to capture inter-correlations of users and items. We train the GNN and Transformer encoders on these pretext tasks under the meta-learning setting to simulate the real cold-start scenario, making the model easily and rapidly being adapted to new cold-start users and items. Experiments on three public recommendation datasets show the superiority of the proposed MPT model against the vanilla GNN models, the pre-training GNN model on user/item embedding inference and the recommendation task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Bowen Hao (7 papers)
  2. Hongzhi Yin (210 papers)
  3. Jing Zhang (731 papers)
  4. Cuiping Li (42 papers)
  5. Hong Chen (230 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.