Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Graph Learning for Occasional Group Recommendation (2112.02274v4)

Published 4 Dec 2021 in cs.IR and cs.AI

Abstract: As an important branch in Recommender System, occasional group recommendation has received more and more attention. In this scenario, each occasional group (cold-start group) has no or few historical interacted items. As each occasional group has extremely sparse interactions with items, traditional group recommendation methods can not learn high-quality group representations. The recent proposed Graph Neural Networks (GNNs), which incorporate the high-order neighbors of the target occasional group, can alleviate the above problem in some extent. However, these GNNs still can not explicitly strengthen the embedding quality of the high-order neighbors with few interactions. Motivated by the Self-supervised Learning technique, which is able to find the correlations within the data itself, we propose a self-supervised graph learning framework, which takes the user/item/group embedding reconstruction as the pretext task to enhance the embeddings of the cold-start users/items/groups. In order to explicitly enhance the high-order cold-start neighbors' embedding quality, we further introduce an embedding enhancer, which leverages the self-attention mechanism to improve the embedding quality for them. Comprehensive experiments show the advantages of our proposed framework than the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bowen Hao (7 papers)
  2. Hongzhi Yin (210 papers)
  3. Cuiping Li (42 papers)
  4. Hong Chen (230 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.