Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Divide-and-Conquer Algorithm for Distributed Optimization on Networks (2112.02197v1)

Published 3 Dec 2021 in math.OC, cs.DC, and eess.SP

Abstract: In this paper, we consider networks with topologies described by some connected undirected graph ${\mathcal{G}}=(V, E)$ and with some agents (fusion centers) equipped with processing power and local peer-to-peer communication, and optimization problem $\min_{{\boldsymbol x}}\big{F({\boldsymbol x})=\sum_{i\in V}f_i({\boldsymbol x})\big}$ with local objective functions $f_i$ depending only on neighboring variables of the vertex $i\in V$. We introduce a divide-and-conquer algorithm to solve the above optimization problem in a distributed and decentralized manner. The proposed divide-and-conquer algorithm has exponential convergence, its computational cost is almost linear with respect to the size of the network, and it can be fully implemented at fusion centers of the network. Our numerical demonstrations also indicate that the proposed divide-and-conquer algorithm has superior performance than popular decentralized optimization methods do for the least squares problem with/without $\ell1$ penalty.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.