Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 11 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Noisy Bayesian optimization for variational quantum eigensolvers (2112.00426v1)

Published 1 Dec 2021 in quant-ph and hep-lat

Abstract: The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm used to find the ground state of a Hamiltonian using variational methods. In the context of this Lattice symposium, the procedure can be used to study lattice gauge theories (LGTs) in the Hamiltonian formulation. Bayesian optimization (BO) based on Gaussian process regression (GPR) is a powerful algorithm for finding the global minimum of a cost function, e.g. the energy, with a very low number of iterations using data affected by statistical noise. This work proposes an implementation of GPR and BO specifically tailored to perform VQE on quantum computers already available today.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.