Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

FROB: Few-shot ROBust Model for Classification and Out-of-Distribution Detection (2111.15487v2)

Published 30 Nov 2021 in cs.LG and stat.ML

Abstract: Nowadays, classification and Out-of-Distribution (OoD) detection in the few-shot setting remain challenging aims due to rarity and the limited samples in the few-shot setting, and because of adversarial attacks. Accomplishing these aims is important for critical systems in safety, security, and defence. In parallel, OoD detection is challenging since deep neural network classifiers set high confidence to OoD samples away from the training data. To address such limitations, we propose the Few-shot ROBust (FROB) model for classification and few-shot OoD detection. We devise FROB for improved robustness and reliable confidence prediction for few-shot OoD detection. We generate the support boundary of the normal class distribution and combine it with few-shot Outlier Exposure (OE). We propose a self-supervised learning few-shot confidence boundary methodology based on generative and discriminative models. The contribution of FROB is the combination of the generated boundary in a self-supervised learning manner and the imposition of low confidence at this learned boundary. FROB implicitly generates strong adversarial samples on the boundary and forces samples from OoD, including our boundary, to be less confident by the classifier. FROB achieves generalization to unseen OoD with applicability to unknown, in the wild, test sets that do not correlate to the training datasets. To improve robustness, FROB redesigns OE to work even for zero-shots. By including our boundary, FROB reduces the threshold linked to the model's few-shot robustness; it maintains the OoD performance approximately independent of the number of few-shots. The few-shot robustness analysis evaluation of FROB on different sets and on One-Class Classification (OCC) data shows that FROB achieves competitive performance and outperforms benchmarks in terms of robustness to the outlier few-shot sample population and variability.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube