Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
122 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Zero-Shot Semantic Segmentation via Spatial and Multi-Scale Aware Visual Class Embedding (2111.15181v2)

Published 30 Nov 2021 in cs.CV

Abstract: Fully supervised semantic segmentation technologies bring a paradigm shift in scene understanding. However, the burden of expensive labeling cost remains as a challenge. To solve the cost problem, recent studies proposed LLM based zero-shot semantic segmentation (L-ZSSS) approaches. In this paper, we address L-ZSSS has a limitation in generalization which is a virtue of zero-shot learning. Tackling the limitation, we propose a language-model-free zero-shot semantic segmentation framework, Spatial and Multi-scale aware Visual Class Embedding Network (SM-VCENet). Furthermore, leveraging vision-oriented class embedding SM-VCENet enriches visual information of the class embedding by multi-scale attention and spatial attention. We also propose a novel benchmark (PASCAL2COCO) for zero-shot semantic segmentation, which provides generalization evaluation by domain adaptation and contains visually challenging samples. In experiments, our SM-VCENet outperforms zero-shot semantic segmentation state-of-the-art by a relative margin in PASCAL-5i benchmark and shows generalization-robustness in PASCAL2COCO benchmark.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.