Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Attention for Image Captioning: Review of Outstanding Methods (2111.15015v1)

Published 29 Nov 2021 in cs.CV

Abstract: Image captioning is the task of automatically generating sentences that describe an input image in the best way possible. The most successful techniques for automatically generating image captions have recently used attentive deep learning models. There are variations in the way deep learning models with attention are designed. In this survey, we provide a review of literature related to attentive deep learning models for image captioning. Instead of offering a comprehensive review of all prior work on deep image captioning models, we explain various types of attention mechanisms used for the task of image captioning in deep learning models. The most successful deep learning models used for image captioning follow the encoder-decoder architecture, although there are differences in the way these models employ attention mechanisms. Via analysis on performance results from different attentive deep models for image captioning, we aim at finding the most successful types of attention mechanisms in deep models for image captioning. Soft attention, bottom-up attention, and multi-head attention are the types of attention mechanism widely used in state-of-the-art attentive deep learning models for image captioning. At the current time, the best results are achieved from variants of multi-head attention with bottom-up attention.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (38)

Summary

We haven't generated a summary for this paper yet.