Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Captioning as Neural Machine Translation Task in SOCKEYE (1810.04101v3)

Published 9 Oct 2018 in cs.CV

Abstract: Image captioning is an interdisciplinary research problem that stands between computer vision and natural language processing. The task is to generate a textual description of the content of an image. The typical model used for image captioning is an encoder-decoder deep network, where the encoder captures the essence of an image while the decoder is responsible for generating a sentence describing the image. Attention mechanisms can be used to automatically focus the decoder on parts of the image which are relevant to predict the next word. In this paper, we explore different decoders and attentional models popular in neural machine translation, namely attentional recurrent neural networks, self-attentional transformers, and fully-convolutional networks, which represent the current state of the art of neural machine translation. The image captioning module is available as part of SOCKEYE at https://github.com/awslabs/sockeye which tutorial can be found at https://awslabs.github.io/sockeye/image_captioning.html .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Loris Bazzani (14 papers)
  2. Tobias Domhan (9 papers)
  3. Felix Hieber (8 papers)
Citations (2)