Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Clustering-based Change-point Detection Methods Applicable to High Dimension, Low Sample Size Data (2111.14012v1)

Published 28 Nov 2021 in stat.ME

Abstract: Detection of change-points in a sequence of high-dimensional observations is a very challenging problem, and this becomes even more challenging when the sample size (i.e., the sequence length) is small. In this article, we propose some change-point detection methods based on clustering, which can be conveniently used in such high dimension, low sample size situations. First, we consider the single change-point problem. Using k-means clustering based on some suitable dissimilarity measures, we propose some methods for testing the existence of a change-point and estimating its location. High-dimensional behavior of these proposed methods are investigated under appropriate regularity conditions. Next, we extend our methods for detection of multiple change-points. We carry out extensive numerical studies to compare the performance of our proposed methods with some state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.