Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional Change-point Detection Using Generalized Homogeneity Metrics (2105.08976v1)

Published 19 May 2021 in stat.ME

Abstract: Change-point detection has been a classical problem in statistics and econometrics. This work focuses on the problem of detecting abrupt distributional changes in the data-generating distribution of a sequence of high-dimensional observations, beyond the first two moments. This has remained a substantially less explored problem in the existing literature, especially in the high-dimensional context, compared to detecting changes in the mean or the covariance structure. We develop a nonparametric methodology to (i) detect an unknown number of change-points in an independent sequence of high-dimensional observations and (ii) test for the significance of the estimated change-point locations. Our approach essentially rests upon nonparametric tests for the homogeneity of two high-dimensional distributions. We construct a single change-point location estimator via defining a cumulative sum process in an embedded Hilbert space. As the key theoretical innovation, we rigorously derive its limiting distribution under the high dimension medium sample size (HDMSS) framework. Subsequently we combine our statistic with the idea of wild binary segmentation to recursively estimate and test for multiple change-point locations. The superior performance of our methodology compared to other existing procedures is illustrated via extensive simulation studies as well as over stock prices data observed during the period of the Great Recession in the United States.

Summary

We haven't generated a summary for this paper yet.