Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

ACD-EDMD: Analytical Construction for Dictionaries of Lifting Functions in Koopman Operator-based Nonlinear Robotic Systems (2111.12256v1)

Published 24 Nov 2021 in cs.RO

Abstract: Koopman operator theory has been gaining momentum for model extraction, planning, and control of data-driven robotic systems. The Koopman operator's ability to extract dynamics from data depends heavily on the selection of an appropriate dictionary of lifting functions. In this paper we propose ACD-EDMD, a new method for Analytical Construction of Dictionaries of appropriate lifting functions for a range of data-driven Koopman operator based nonlinear robotic systems. The key insight of this work is that information about fundamental topological spaces of the nonlinear system (such as its configuration space and workspace) can be exploited to steer the construction of Hermite polynomial-based lifting functions. We show that the proposed method leads to dictionaries that are simple to implement while enjoying provable completeness and convergence guarantees when observables are weighted bounded. We evaluate ACD-EDMD using a range of diverse nonlinear robotic systems in both simulated and physical hardware experimentation (a wheeled mobile robot, a two-revolute-joint robotic arm, and a soft robotic leg). Results reveal that our method leads to dictionaries that enable high-accuracy prediction and that can generalize to diverse validation sets. The associated GitHub repository of our algorithm can be accessed at \url{https://github.com/UCR-Robotics/ACD-EDMD}.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube