Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Developments in the Tensor Network -- from Statistical Mechanics to Quantum Entanglement (2111.12223v3)

Published 24 Nov 2021 in cond-mat.stat-mech, hep-lat, hep-th, and quant-ph

Abstract: Tensor networks (TNs) have become one of the most essential building blocks for various fields of theoretical physics such as condensed matter theory, statistical mechanics, quantum information, and quantum gravity. This review provides a unified description of a series of developments in the TN from the statistical mechanics side. In particular, we begin with the variational principle for the transfer matrix of the 2D Ising model, which naturally leads us to the matrix product state (MPS) and the corner transfer matrix (CTM). We then explain how the CTM can be evolved to such MPS-based approaches as density matrix renormalization group (DMRG) and infinite time-evolved block decimation. We also elucidate that the finite-size DMRG played an intrinsic role for incorporating various quantum information concepts in subsequent developments in the TN. After surveying higher-dimensional generalizations like tensor product states or projected entangled pair states, we describe tensor renormalization groups (TRGs), which are a fusion of TNs and Kadanoff-Wilson type real-space renormalization groups, focusing on their fixed point structures. We then discuss how the difficulty in TRGs for critical systems can be overcome in the tensor network renormalization and the multi-scale entanglement renormalization ansatz.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.