Finite Coxeter Groups and Generalized Elnitsky Tilings (2111.10669v4)
Abstract: In [5], Elnitsky constructed three elegant bijections between classes of reduced words for Type $\mathrm{A}$, $\mathrm{B}$ and $\mathrm{D}$ families of Coxeter groups and certain tilings of polygons. This paper offers a particular generalization of this concept to all finite Coxeter Groups in terms of embeddings into the Symmetric Group. [5] Elnitsky, Serge. Rhombic tilings of polygons and classes of reduced words in Coxeter groups. PhD dissertation, University of Michigan, 1993.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.