Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization for the Metaverse over Mobile Edge Computing with Play to Earn (2312.05871v1)

Published 10 Dec 2023 in cs.DC, cs.SY, eess.SY, and math.OC

Abstract: The concept of the Metaverse has garnered growing interest from both academic and industry circles. The decentralization of both the integrity and security of digital items has spurred the popularity of play-to-earn (P2E) games, where players are entitled to earn and own digital assets which they may trade for physical-world currencies. However, these computationally-intensive games are hardly playable on resource-limited mobile devices and the computational tasks have to be offloaded to an edge server. Through mobile edge computing (MEC), users can upload data to the Metaverse Service Provider (MSP) edge servers for computing. Nevertheless, there is a trade-off between user-perceived in-game latency and user visual experience. The downlink transmission of lower-resolution videos lowers user-perceived latency while lowering the visual fidelity and consequently, earnings of users. In this paper, we design a method to enhance the Metaverse-based mobile augmented reality (MAR) in-game user experience. Specifically, we formulate and solve a multi-objective optimization problem. Given the inherent NP-hardness of the problem, we present a low-complexity algorithm to address it, mitigating the trade-off between delay and earnings. The experiment results show that our method can effectively balance the user-perceived latency and profitability, thus improving the performance of Metaverse-based MAR systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. R. Farrington, “Play-to-earn gaming is driving nft and crypto growth,” Dec 2021. [Online]. Available: https://www.forbes.com/sites/robertfarrington/2021/12/13/play-to-earn-gaming-is-driving-nft-and-crypto-growth/?sh=d0413dbc2dc0
  2. D. Grider, “The metaverse,” https://grayscale.com/wp-content/uploads/2021/11/Grayscale_Metaverse_Report_Nov2021.pdf, 2021.
  3. M. Prathap and P. Gill, “The ‘metaverse’ may change the way you earn money, shop or even chill with friends in the future,” https://www.businessinsider.in/investment/news/the-metaverse-may-change-the-way-you-earn-money-shop-or-even-chill-with-friends-in-the-future/slidelist/86677906.cms, 2021.
  4. Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Compute-and data-intensive networks: The key to the metaverse,” arXiv preprint arXiv:2204.02001, 2022.
  5. J. Yu, A. Alhilal, P. Hui, and D. H. Tsang, “6g mobile-edge empowered metaverse: Requirements, technologies, challenges and research directions,” arXiv preprint arXiv:2211.04854, 2022.
  6. W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, “Towards efficient edge cloud augmentation for virtual reality mmogs,” in Proceedings of the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–14.
  7. N. H. Chu, D. T. Hoang, D. N. Nguyen, K. T. Phan, and E. Dutkiewicz, “Metaslicing: A novel resource allocation framework for metaverse,” arXiv preprint arXiv:2205.11087, 2022.
  8. Y. Han, D. Niyato, C. Leung, C. Miao, and D. I. Kim, “A dynamic resource allocation framework for synchronizing metaverse with iot service and data,” arXiv preprint arXiv:2111.00431, 2021.
  9. W. C. Ng, W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, and C. Miao, “Unified resource allocation framework for the edge intelligence-enabled metaverse,” arXiv preprint arXiv:2110.14325, 2021.
  10. P. Si, J. Zhao, H. Han, K.-Y. Lam, and Y. Liu, “Resource allocation and resolution control in the metaverse with mobile augmented reality,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 3265–3271.
  11. D. Van Huynh, S. R. Khosravirad, A. Masaracchia, O. A. Dobre, and T. Q. Duong, “Edge intelligence-based ultra-reliable and low-latency communications for digital twin-enabled metaverse,” IEEE Wireless Communications Letters, vol. 11, no. 8, pp. 1733–1737, 2022.
  12. Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint computation offloading and user association in multi-task mobile edge computing,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 313–12 325, 2018.
  13. H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and scheduling in edge-clouds,” in IEEE INFOCOM 2017-IEEE Conference on Computer Communications.   IEEE, 2017, pp. 1–9.
  14. M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in wireless metropolitan area networks,” in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications.   IEEE, 2016, pp. 1–9.
  15. L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile computing,” in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications.   IEEE, 2016, pp. 1–9.
  16. Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator for mobile augmented reality,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications.   IEEE, 2018, pp. 756–764.
  17. C. Wang, S. Zhang, Z. Qian, M. Xiao, J. Wu, B. Ye, and S. Lu, “Joint server assignment and resource management for edge-based mar system,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2378–2391, 2020.
  18. X. Chen and G. Liu, “Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networks,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10 843–10 856, 2021.
  19. H. Wang and J. Xie, “User preference based energy-aware mobile ar system with edge computing,” in IEEE INFOCOM 2020-IEEE conference on computer communications.   IEEE, 2020, pp. 1379–1388.
  20. S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computational resources for multicell mobile-edge computing,” IEEE Transactions on Signal and Information Processing over Networks, vol. 1, no. 2, pp. 89–103, 2015.
  21. Z. Xiong, J. Zhao, Y. Zhang, D. Niyato, and J. Zhang, “Contract design in hierarchical game for sponsored content service market,” IEEE Transactions on Mobile Computing, vol. 20, no. 9, pp. 2763–2778, 2020.
  22. R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Structural and multidisciplinary optimization, vol. 41, no. 6, pp. 853–862, 2010.
  23. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan, “Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1–131, 2013.
  24. M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined convex programming,” 2008.
  25. M. Sheng, D. Zhai, X. Wang, Y. Li, Y. Shi, and J. Li, “Intelligent energy and traffic coordination for green cellular networks with hybrid energy supply,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1631–1646, 2016.
  26. Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, 2010.
  27. M. Elwardy, H.-J. Zepetnick, T. M. C. Chu, and Y. Hu, “On the opinion score consistency in repeated 360° video quality assessment for standing and seated viewing on head-mounted displays,” in 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS).   IEEE, 2021, pp. 1–10.
  28. Netflix, “Perceptual video quality assessment based on multi-method fusion.” 2021. [Online]. Available: https://github.com/Netflix/vmaf
  29. Z. Jiang, Y. Ge, and Y. Li, “Max-utility wireless resource management for best-effort traffic,” IEEE Transactions on Wireless Communications, vol. 4, no. 1, pp. 100–111, 2005.
  30. D. Yang, G. Xue, X. Fang, and J. Tang, “Incentive mechanisms for crowdsensing: Crowdsourcing with smartphones,” IEEE/ACM transactions on networking, vol. 24, no. 3, pp. 1732–1744, 2015.
  31. E. Bastug, M. Bennis, M. Médard, and M. Debbah, “Toward interconnected virtual reality: Opportunities, challenges, and enablers,” IEEE Communications Magazine, vol. 55, no. 6, pp. 110–117, 2017.

Summary

We haven't generated a summary for this paper yet.