Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysis of autocorrelation times in Neural Markov Chain Monte Carlo simulations (2111.10189v3)

Published 19 Nov 2021 in cond-mat.stat-mech, cs.LG, hep-lat, and stat.ML

Abstract: We provide a deepened study of autocorrelations in Neural Markov Chain Monte Carlo (NMCMC) simulations, a version of the traditional Metropolis algorithm which employs neural networks to provide independent proposals. We illustrate our ideas using the two-dimensional Ising model. We discuss several estimates of autocorrelation times in the context of NMCMC, some inspired by analytical results derived for the Metropolized Independent Sampler (MIS). We check their reliability by estimating them on a small system where analytical results can also be obtained. Based on the analytical results for MIS we propose a new loss function and study its impact on the autocorelation times. Although, this function's performance is a bit inferior to the traditional Kullback-Leibler divergence, it offers two training algorithms which in some situations may be beneficial. By studying a small, $4 \times 4$, system we gain access to the dynamics of the training process which we visualize using several observables. Furthermore, we quantitatively investigate the impact of imposing global discrete symmetries of the system in the neural network training process on the autocorrelation times. Eventually, we propose a scheme which incorporates partial heat-bath updates which considerably improves the quality of the training. The impact of the above enhancements is discussed for a $16 \times 16$ spin system. The summary of our findings may serve as a guidance to the implementation of Neural Markov Chain Monte Carlo simulations for more complicated models.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.