Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Optimism and Delays in Episodic Reinforcement Learning (2111.07615v2)

Published 15 Nov 2021 in cs.LG

Abstract: There are many algorithms for regret minimisation in episodic reinforcement learning. This problem is well-understood from a theoretical perspective, providing that the sequences of states, actions and rewards associated with each episode are available to the algorithm updating the policy immediately after every interaction with the environment. However, feedback is almost always delayed in practice. In this paper, we study the impact of delayed feedback in episodic reinforcement learning from a theoretical perspective and propose two general-purpose approaches to handling the delays. The first involves updating as soon as new information becomes available, whereas the second waits before using newly observed information to update the policy. For the class of optimistic algorithms and either approach, we show that the regret increases by an additive term involving the number of states, actions, episode length, the expected delay and an algorithm-dependent constant. We empirically investigate the impact of various delay distributions on the regret of optimistic algorithms to validate our theoretical results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube