Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear maps preserving the Lorentz spectrum: The $2\times 2$ case (2111.07174v2)

Published 13 Nov 2021 in math.RA

Abstract: In this paper a complete description of the linear maps $\phi:W_{n}\rightarrow W_{n}$ that preserve the Lorentz spectrum is given when $n=2$ and $W_{n}$ is the space $M_{n}$ of $n\times n$ real matrices or the subspace $S_{n}$ of $M_{n}$ formed by the symmetric matrices. In both cases, it has been shown that $\phi(A)=PAP{-1}$ for all $A\in W_{2}$, where $P$ is a matrix with a certain structure. It was also shown that such preservers do not change the nature of the Lorentz eigenvalues (that is, the fact that they are associated with Lorentz eigenvectors in the interior or on the boundary of the Lorentz cone). These results extend to $n=2$ those for $n\geq 3$ obtained by Bueno, Furtado, and Sivakumar (2021). The case $n=2$ has some specificities, when compared to the case $n\geq3,$ due to the fact that the Lorentz cone in $\mathbb{R}{2}$ is polyedral, contrary to what happens when it is contained in $\mathbb{R}{n}$ with $n\geq3.$ Thus, the study of the Lorentz spectrum preservers on $W_n = M_n$ also follows from the known description of the Pareto spectrum preservers on $M_n$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.