A Point-Conic Incidence Bound and Applications over $\mathbb F_p$ (2111.04072v2)
Abstract: In this paper, we prove the first incidence bound for points and conics over prime fields. As applications, we prove new results on expansion of bivariate polynomial images and on certain variations of distinct distances problems. These include new lower bounds on the number of pinned algebraic distances as well as improvements of results of Koh and Sun (2014) and Shparlinski (2006) on the size of the distance set formed by two large subsets of finite dimensional vector spaces over finite fields. We also prove a variant of Beck's theorem for conics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.