Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parisian ruin with random deficit-dependent delays for spectrally negative Lévy processes (2111.02695v1)

Published 4 Nov 2021 in math.PR

Abstract: We consider an interesting natural extension to the Parisian ruin problem under the assumption that the risk reserve dynamics are given by a spectrally negative L\'evy process. The distinctive feature of this extension is that the distribution of the random implementation delay windows' lengths can depend on the deficit at the epochs when the risk reserve process turns negative, starting a new negative excursion. This includes the possibility of an immediate ruin when the deficit hits a certain subset. In this general setting, we derive a closed-from expression for the Parisian ruin probability and the joint Laplace transform of the Parisian ruin time and the deficit at ruin.

Summary

We haven't generated a summary for this paper yet.