Papers
Topics
Authors
Recent
2000 character limit reached

Gerber-Shiu functionals at Parisian ruin for Lévy insurance risk processes

Published 25 Jul 2014 in math.PR | (1407.6785v3)

Abstract: Inspired by works of Landriault et al. \cite{LRZ-0, LRZ}, we study discounted penalties at ruin for surplus dynamics driven by a spectrally negative L\'evy process with Parisian implementation delays. To be specific, we study the so-called Gerber-Shiu functional for a ruin model where at each time the surplus process goes negative, an independent exponential clock with rate $q>0$ is started. If the clock rings before the surplus becomes positive again then the insurance company is ruined. Our methodology uses excursion theory for spectrally negative L\'evy processes and relies on the theory of the so-called scale functions. In particular, our results extend recent results of Landriault et al. \cite{LRZ-0, LRZ}.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.