Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comprehensive and Clinically Accurate Head and Neck Organs at Risk Delineation via Stratified Deep Learning: A Large-scale Multi-Institutional Study (2111.01544v1)

Published 1 Nov 2021 in eess.IV, cs.CV, and physics.med-ph

Abstract: Accurate organ at risk (OAR) segmentation is critical to reduce the radiotherapy post-treatment complications. Consensus guidelines recommend a set of more than 40 OARs in the head and neck (H&N) region, however, due to the predictable prohibitive labor-cost of this task, most institutions choose a substantially simplified protocol by delineating a smaller subset of OARs and neglecting the dose distributions associated with other OARs. In this work we propose a novel, automated and highly effective stratified OAR segmentation (SOARS) system using deep learning to precisely delineate a comprehensive set of 42 H&N OARs. SOARS stratifies 42 OARs into anchor, mid-level, and small & hard subcategories, with specifically derived neural network architectures for each category by neural architecture search (NAS) principles. We built SOARS models using 176 training patients in an internal institution and independently evaluated on 1327 external patients across six different institutions. It consistently outperformed other state-of-the-art methods by at least 3-5% in Dice score for each institutional evaluation (up to 36% relative error reduction in other metrics). More importantly, extensive multi-user studies evidently demonstrated that 98% of the SOARS predictions need only very minor or no revisions for direct clinical acceptance (saving 90% radiation oncologists workload), and their segmentation and dosimetric accuracy are within or smaller than the inter-user variation. These findings confirmed the strong clinical applicability of SOARS for the OAR delineation process in H&N cancer radiotherapy workflows, with improved efficiency, comprehensiveness, and quality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (25)
  1. Dazhou Guo (23 papers)
  2. Jia Ge (11 papers)
  3. Xianghua Ye (24 papers)
  4. Senxiang Yan (5 papers)
  5. Yi Xin (28 papers)
  6. Yuchen Song (16 papers)
  7. Bing-shen Huang (2 papers)
  8. Tsung-Min Hung (2 papers)
  9. Zhuotun Zhu (17 papers)
  10. Ling Peng (7 papers)
  11. Yanping Ren (2 papers)
  12. Rui Liu (320 papers)
  13. Gong Zhang (38 papers)
  14. Mengyuan Mao (1 paper)
  15. Xiaohua Chen (5 papers)
  16. Zhongjie Lu (5 papers)
  17. Wenxiang Li (3 papers)
  18. Yuzhen Chen (10 papers)
  19. Lingyun Huang (20 papers)
  20. Jing Xiao (267 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.