Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Leveraging Population Outcomes to Improve the Generalization of Experimental Results (2111.01357v1)

Published 2 Nov 2021 in stat.ME

Abstract: Generalizing causal estimates in randomized experiments to a broader target population is essential for guiding decisions by policymakers and practitioners in the social and biomedical sciences. While papers developed various weighting estimators for the population average treatment effect (PATE), many of these methods result in large variance because the experimental sample often differs substantially from the target population, and estimated sampling weights are extreme. To improve efficiency in practice, we propose post-residualized weighting in which we use the outcome measured in the observational population data to build a flexible predictive model (e.g., machine learning methods) and residualize the outcome in the experimental data before using conventional weighting methods. We show that the proposed PATE estimator is consistent under the same assumptions required for existing weighting methods, importantly without assuming the correct specification of the predictive model. We demonstrate the efficiency gains from this approach through simulations and our application based on a set of job training experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.