Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Asymptotic symmetries in Carrollian theories of gravity (2110.15834v2)

Published 29 Oct 2021 in hep-th and gr-qc

Abstract: Asymptotic symmetries in Carrollian gravitational theories in 3+1 space and time dimensions obtained from "magnetic" and "electric" ultrarelativistic contractions of General Relativity are analyzed. In both cases, parity conditions are needed to guarantee a finite symplectic term, in analogy with Einstein gravity. For the magnetic contraction, when Regge-Teitelboim parity conditions are imposed, the asymptotic symmetries are described by the Carroll group. With Henneaux-Troessaert parity conditions, the asymptotic symmetry algebra corresponds to a BMS-like extension of the Carroll algebra. For the electric contraction, because the lapse function does not appear in the boundary term needed to ensure a well-defined action principle, the asymptotic symmetry algebra is truncated, for Regge-Teitelboim parity conditions, to the semidirect sum of spatial rotations and spatial translations. Similarly, with Henneaux-Troessaert parity conditions, the asymptotic symmetries are given by the semidirect sum of spatial rotations and an infinite number of parity odd supertranslations. Thus, from the point of view of the asymptotic symmetries, the magnetic contraction can be seen as a smooth limit of General Relativity, in contrast to its electric counterpart.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)