Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multichannel Speech Enhancement without Beamforming (2110.13130v2)

Published 25 Oct 2021 in cs.SD and eess.AS

Abstract: Deep neural networks are often coupled with traditional spatial filters, such as MVDR beamformers for effectively exploiting spatial information. Even though single-stage end-to-end supervised models can obtain impressive enhancement, combining them with a traditional beamformer and a DNN-based post-filter in a multistage processing provides additional improvements. In this work, we propose a two-stage strategy for multi-channel speech enhancement that does not require a traditional beamformer for additional performance. First, we propose a novel attentive dense convolutional network (ADCN) for estimating real and imaginary parts of complex spectrogram. ADCN obtains state-of-the-art results among single-stage models. Next, we use ADCN with a recently proposed triple-path attentive recurrent network (TPARN) for estimating waveform samples. The proposed strategy uses two insights; first, using different approaches in two stages; and second, using a stronger model in the first stage. We illustrate the efficacy of our strategy by evaluating multiple models in a two-stage approach with and without a traditional beamformer.

Citations (13)

Summary

We haven't generated a summary for this paper yet.