Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-channel end-to-end neural network for speech enhancement, source localization, and voice activity detection (2206.09728v1)

Published 20 Jun 2022 in eess.AS

Abstract: Speech enhancement and source localization has been active research for several decades with a wide range of real-world applications. Recently, the Deep Complex Convolution Recurrent network (DCCRN) has yielded impressive enhancement performance for single-channel systems. In this study, a neural beamformer consisting of a beamformer and a novel multi-channel DCCRN is proposed for speech enhancement and source localization. Complex-valued filters estimated by the multi-channel DCCRN serve as the weights of beamformer. In addition, a one-stage learning-based procedure is employed for speech enhancement and source localization. The proposed network composed of the multi-channel DCCRN and the auxiliary network models the sound field, while minimizing the distortionless response loss function. Simulation results show that the proposed neural beamformer is effective in enhancing speech signals, with speech quality well preserved. The proposed neural beamformer also provides source localization and voice activity detection (VAD) functions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuan Chen (113 papers)
  2. Yicheng Hsu (12 papers)
  3. Mingsian R. Bai (10 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.