Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
87 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
435 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Content Filtering Enriched GNN Framework for News Recommendation (2110.12681v1)

Published 25 Oct 2021 in cs.IR

Abstract: Learning accurate users and news representations is critical for news recommendation. Despite great progress, existing methods seem to have a strong bias towards content representation or just capture collaborative filtering relationship. However, these approaches may suffer from the data sparsity problem (user-news interactive behavior sparsity problem) or maybe affected more by news (or user) with high popularity. In this paper, to address such limitations, we propose content filtering enriched GNN framework for news recommendation, ConFRec in short. It is compatible with existing GNN-based approaches for news recommendation and can capture both collaborative and content filtering information simultaneously. Comprehensive experiments are conducted to demonstrate the effectiveness of ConFRec over the state-of-the-art baseline models for news recommendation on real-world datasets for news recommendation.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.